A complex metacommunity structure for gastropods along an elevational gradient

TitleA complex metacommunity structure for gastropods along an elevational gradient
Publication TypeJournal Article
Year of Publication2011
AuthorsPresley, SJ, Willig, MR, Bloch, CP, de Castro, F, Higgins, CL, Klingbeil, BT
Accession NumberLUQ.1000
KeywordsClementsian distributions, coherence, environmental gradients, gastropoda, Puerto Rico, rain forest, range boundary clumping, range turnover

The metacommunity framework integrates species-specific responses to environmental gradients to detect emergent patterns of mesoscale organization. Abiotic characteristics (temperature, precipitation) and associated vegetation types change with elevation in a predictable fashion, providing opportunities to decouple effects of environmental gradients per se from those of biogeographical or historical origin. Moreover, expected structure is different if a metacommunity along an elevational gradient is molded by idiosyncratic responses to abiotic variables (expectation = Gleasonian structure) than if such a metacommunity is molded by strong habitat preferences or specializations (expectation = Clementsian structure). We evaluated metacommunity structure for 13 species of gastropod from 15 sites along an elevationaltransect in the Luquillo Experimental Forest of Puerto Rico. Analyses were conducted separately for the primary axis and for the secondary axis of correspondence extracted via reciprocal averaging. The metacommunity exhibited quasi-Clementsian structure along the primary axis, which represented a gradient of gastropod species specialization that was unassociated with elevation. The secondary axis represented environmental variation associated with elevation. Along this axis, the metacommunity exhibited Clementsian structure, with specialists characterizing each of three suites of sites that corresponded to three distinct forest types. These forest types are associated with low (tabonuco forest), mid- (palo colorado forest), or high (elfin forest) elevations. Thus, variation among sites in species composition reflected two independent processes: the first decoupled from elevational variation and its environmental correlates, and the second highly associated with environmental variation correlated with elevation.Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp