TY - JOUR
T1 - Global importance of large‐diameter trees
JF - Global Ecology and Biogeography
Y1 - 2018
A1 - Lutz, J. A.
A1 - Furniss, T. J.
A1 - Johnson, D. J.
A1 - Davies, S. J.
A1 - Allen, D.
A1 - Alonso, A.
A1 - Anderson-Teixeira, K. J.
A1 - Andrade, A.
A1 - Baltzer, J.
A1 - Becker, K. M. L.
A1 - Blomdahl, E. M.
A1 - Bourg, N. A.
A1 - Bunyavejchewin, S.
A1 - Burslem, D. F. R. P.
A1 - Cansler, C. A.
A1 - Cao, M.
A1 - Cao, K.
A1 - Cárdenas, D.
A1 - Chang, L. W.
A1 - Chao, W. C.
A1 - Chiang, J. M.
A1 - Chu, C.
A1 - Chuyong, G. B.
A1 - Clay, K.
A1 - Condit, R.
A1 - Cordell, S.
A1 - Dattaraja, H. S.
A1 - Duque, A.
A1 - Ewango, C. E. N.
A1 - Fischer, G. A.
A1 - Fletcher, C.
A1 - Freund, J. A.
A1 - Giardina, J.
A1 - Germain, S. J.
A1 - Gilbert, G. S.
A1 - Hao, Z.
A1 - Hart, T.
A1 - Hau, B. C. H.
A1 - He, F.
A1 - Hector, A.
A1 - Howe, R.
A1 - Hsieh, Chang-Fu
A1 - Hu, Yue-Hua
A1 - Hubbell, S. P.
A1 - Inman-Narahari, F.
A1 - Itoh, A.
A1 - Janík, D.
A1 - Kassim, A. R.
A1 - Kenfack, D.
A1 - Korte, L.
A1 - Král, K.
A1 - Larson, A. J.
A1 - Li, Y.
A1 - Lin, Y.
A1 - Liu, S.
A1 - Lum, S.
A1 - Ma, K.
A1 - Makana, J. R.
A1 - Malhi, Y.
A1 - McMahon, S. M.
A1 - McShea, W. J.
A1 - Memiaghe, H. R.
A1 - Mi, X.
A1 - Morecroft, M.
A1 - Musili, P. M.
A1 - Myers, J.
A1 - Novotny, V.
A1 - de Oliveira, Alexandre A.
A1 - Ong, P.
A1 - Orwig, D. A.
A1 - Ostertag, R.
A1 - Parker, G. G.
A1 - Patankar, R.
A1 - Phillips, R. P.
A1 - Reynolds, G.
A1 - Sack, L.
A1 - Song, G. Z. M.
A1 - Su, S. H.
A1 - Sukumar, R.
A1 - Sun, I. F.
A1 - Suresh, H. S.
A1 - Swanson, M. E.
A1 - Tan, S.
A1 - Thomas, D. W.
A1 - Thompson, J.
A1 - Uriarte, M.
A1 - Valencia, R.
A1 - Vicentini, A.
A1 - Vrska, T.
A1 - Wang, X.
A1 - Weiblen, G. D.
A1 - Wolf, A.
A1 - Wu, S. H.
A1 - Xu, H.
A1 - Yamakura, T.
A1 - Yap, S.
A1 - Zimmerman, J. K.
KW - forest biomass
KW - forest structure
KW - large‐diameter trees
KW - Latitudinal gradient
KW - resource inequality
KW - Smithsonian ForestGEO
AB - Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
VL - 27
UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12747
IS - 7
ER -
TY - JOUR
T1 - Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
JF - Biogeosciences
Y1 - 2014
A1 - Réjou-Méchain, M.
A1 - Muller-Landau, H. C.
A1 - M. Detto
A1 - Thomas, S. C.
A1 - Le Toan, T.
A1 - Saatchi, S. S.
A1 - Barreto-Silva, J. S.
A1 - Bourg, N. A.
A1 - Bunyavejchewin, S.
A1 - Butt, N.
A1 - Brockelman, W. Y.
A1 - Cao, M.
A1 - Cárdenas, D.
A1 - Chiang, J. M.
A1 - Chuyong, G. B.
A1 - Clay, K.
A1 - Condit, R.
A1 - H. S. Dattaraja
A1 - S. J. Davies
A1 - Duque, A.
A1 - Esufali, S.
A1 - Ewango, C.
A1 - Fernando, R. H. S.
A1 - Fletcher, C. D.
A1 - Gunatilleke, I. A. U. N.
A1 - Hao, Z.
A1 - Harms, K. E.
A1 - Hart, T. B.
A1 - Hérault, B.
A1 - Howe, R. W.
A1 - Hubbell, S. P.
A1 - Johnson, D. J.
A1 - Kenfack, D.
A1 - Larson, A. J.
A1 - Lin, L.
A1 - Lin, Y.
A1 - Lutz, J. A.
A1 - Makana, J. R.
A1 - Malhi, Y.
A1 - Marthews, T. R.
A1 - McEwan, R. W.
A1 - McMahon, S. M.
A1 - McShea, W. J.
A1 - R. Muscarella
A1 - Nathalang, A.
A1 - Noor, N. S. M.
A1 - C. Nytch
A1 - Oliveira, A. A.
A1 - Phillips, R. P.
A1 - Pongpattananurak, N.
A1 - Punchi-Manage, R.
A1 - Salim, R.
A1 - Schurman, J.
A1 - Sukumar, R.
A1 - Suresh, H. S.
A1 - Suwanvecho, U.
A1 - Thomas, D. W.
A1 - J. Thompson
A1 - M. Uriarte
A1 - Valencia, R.
A1 - Vicentini, A.
A1 - Wolf, A. T.
A1 - Yap, S.
A1 - Yuan, Z.
A1 - Zartman, C. E.
A1 - J. K. Zimmerman
A1 - Chave, J.
VL - 11
SN - 1726-4189
UR - http://www.biogeosciences.net/11/6827/2014/
IS - 23
JO - Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
ER -
TY - JOUR
T1 - Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models
JF - Ecology Letters
Y1 - 2006
A1 - Chisholm, R. A.
A1 - Muller-Landau, H. C.
A1 - Abdul Rahman, K.
A1 - Bebber, D. P.
A1 - Bin, Y.
A1 - Bohlman, S.A.
A1 - Bourg, N. A.
A1 - Bunyavejchewin, S.
A1 - Butt, N.
A1 - Cao, H.
A1 - Cao, M.
A1 - Cárdenas, D.
A1 - Chang, L. W.
A1 - Chiang, J. M.
A1 - Chuyong, G. B.
A1 - Condit, R.
A1 - Dattaraja, H. S.
A1 - Davies, S.
A1 - Duque, A.
A1 - Fletcher, C. D.
A1 - Gunatilleke, N.
A1 - Gunatilleke, S.
A1 - Hao, Z.
A1 - Harms, K.E.
A1 - Marks, C.O.
A1 - Thomas, S. C.
AB - Tropical forests vary substantially in the densities of trees of different sizes and thus in above‐ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the −2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large‐scale tropical forest plots encompassing censuses of 473 ha and > 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality.
VL - 9
UR - https://doi.org/10.1111/j.1461-0248.2006.00915.x
IS - 5
ER -