TY - JOUR
T1 - Global importance of large‐diameter trees
JF - Global Ecology and Biogeography
Y1 - 2018
A1 - Lutz, J. A.
A1 - Furniss, T. J.
A1 - Johnson, D. J.
A1 - Davies, S. J.
A1 - Allen, D.
A1 - Alonso, A.
A1 - Anderson-Teixeira, K. J.
A1 - Andrade, A.
A1 - Baltzer, J.
A1 - Becker, K. M. L.
A1 - Blomdahl, E. M.
A1 - Bourg, N. A.
A1 - Bunyavejchewin, S.
A1 - Burslem, D. F. R. P.
A1 - Cansler, C. A.
A1 - Cao, M.
A1 - Cao, K.
A1 - Cárdenas, D.
A1 - Chang, L. W.
A1 - Chao, W. C.
A1 - Chiang, J. M.
A1 - Chu, C.
A1 - Chuyong, G. B.
A1 - Clay, K.
A1 - Condit, R.
A1 - Cordell, S.
A1 - Dattaraja, H. S.
A1 - Duque, A.
A1 - Ewango, C. E. N.
A1 - Fischer, G. A.
A1 - Fletcher, C.
A1 - Freund, J. A.
A1 - Giardina, J.
A1 - Germain, S. J.
A1 - Gilbert, G. S.
A1 - Hao, Z.
A1 - Hart, T.
A1 - Hau, B. C. H.
A1 - He, F.
A1 - Hector, A.
A1 - Howe, R.
A1 - Hsieh, Chang-Fu
A1 - Hu, Yue-Hua
A1 - Hubbell, S. P.
A1 - Inman-Narahari, F.
A1 - Itoh, A.
A1 - Janík, D.
A1 - Kassim, A. R.
A1 - Kenfack, D.
A1 - Korte, L.
A1 - Král, K.
A1 - Larson, A. J.
A1 - Li, Y.
A1 - Lin, Y.
A1 - Liu, S.
A1 - Lum, S.
A1 - Ma, K.
A1 - Makana, J. R.
A1 - Malhi, Y.
A1 - McMahon, S. M.
A1 - McShea, W. J.
A1 - Memiaghe, H. R.
A1 - Mi, X.
A1 - Morecroft, M.
A1 - Musili, P. M.
A1 - Myers, J.
A1 - Novotny, V.
A1 - de Oliveira, Alexandre A.
A1 - Ong, P.
A1 - Orwig, D. A.
A1 - Ostertag, R.
A1 - Parker, G. G.
A1 - Patankar, R.
A1 - Phillips, R. P.
A1 - Reynolds, G.
A1 - Sack, L.
A1 - Song, G. Z. M.
A1 - Su, S. H.
A1 - Sukumar, R.
A1 - Sun, I. F.
A1 - Suresh, H. S.
A1 - Swanson, M. E.
A1 - Tan, S.
A1 - Thomas, D. W.
A1 - Thompson, J.
A1 - Uriarte, M.
A1 - Valencia, R.
A1 - Vicentini, A.
A1 - Vrska, T.
A1 - Wang, X.
A1 - Weiblen, G. D.
A1 - Wolf, A.
A1 - Wu, S. H.
A1 - Xu, H.
A1 - Yamakura, T.
A1 - Yap, S.
A1 - Zimmerman, J. K.
KW - forest biomass
KW - forest structure
KW - large‐diameter trees
KW - Latitudinal gradient
KW - resource inequality
KW - Smithsonian ForestGEO
AB - Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
VL - 27
UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12747
IS - 7
ER -
TY - JOUR
T1 - Biodiversity and climate determine the functioning of Neotropical forests
JF - Global Ecology and Biogeography
Y1 - 2017
A1 - Poorter, Lourens
A1 - van der Sande, Masha T.
A1 - Arets, Eric J. M. M.
A1 - Ascarrunz, Nataly
A1 - Enquist, Brian J.
A1 - Finegan, Bryan
A1 - Licona, Juan Carlos
A1 - Martínez-Ramos, Miguel
A1 - Mazzei, Lucas
A1 - Meave, Jorge A.
A1 - Muñoz, Rodrigo
A1 - C. Nytch
A1 - de Oliveira, Alexandre A.
A1 - Pérez-García, Eduardo A.
A1 - Prado-Junior, Jamir
A1 - Rodríguez-Velázques, Jorge
A1 - Ruschel, Ademir Roberto
A1 - Salgado-Negret, Beatriz
A1 - Schiavini, Ivan
A1 - Swenson, Nathan G.
A1 - Tenorio, Elkin A.
A1 - Thompson, Jill
A1 - Toledo, Marisol
A1 - M. Uriarte
A1 - Hout, Peter van der
A1 - Zimmerman, Jess K.
A1 - Peña-Claros, Marielos
KW - Biodiversity
KW - biomass
KW - Carbon
KW - ecosystem functioning
KW - forest dynamics
KW - productivity
KW - Soil fertility
KW - tropical forest
KW - water
AB - Aim Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate aboveground biomass (AGB) and biomass dynamics (i.e., net biomass productivity and its underlying demographic drivers: biomass recruitment, growth and mortality) to forest attributes (tree diversity, community-mean traits and stand basal area) and environmental conditions (water availability, soil fertility and disturbance). Location Neotropics. Methods We used data from 26 sites, 201 1-ha plots and >92,000 trees distributed across the Neotropics. We quantified for each site water availability and soil total exchangeable bases and for each plot three key community-weighted mean functional traits that are important for biomass stocks and productivity. We used structural equation models to test the hypothesis that all drivers have independent, positive effects on biomass stocks and dynamics. Results Of the relationships analysed, vegetation attributes were more frequently associated significantly with biomass stocks and dynamics than environmental conditions (in 67 vs. 33% of the relationships). High climatic water availability increased biomass growth and stocks, light disturbance increased biomass growth, and soil bases had no effect. Rarefied tree species richness had consistent positive relationships with biomass stocks and dynamics, probably because of niche complementarity, but was not related to net biomass productivity. Community-mean traits were good predictors of biomass stocks and dynamics. Main conclusions Water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might, therefore, potentially reduce carbon storage. Forest attributes, including species diversity and community-weighted mean traits, have independent and important relationships with AGB stocks, dynamics and ecosystem functioning, not only in relatively simple temperate systems, but also in structurally complex hyper-diverse tropical forests.
VL - 26
UR - http://dx.doi.org/10.1111/geb.12668
ER -
TY - JOUR
T1 - Biomass resilience of Neotropical secondary forests
JF - Nature
Y1 - 2016
A1 - L. Poorter
A1 - Bongers, Frans
A1 - Aide, T. Mitchell
A1 - Almeyda Zambrano, Angélica M.
A1 - P. Balvanera
A1 - Becknell, Justin M.
A1 - Boukili, Vanessa
A1 - Brancalion, Pedro H. S.
A1 - Broadbent, Eben N.
A1 - R. L. Chazdon
A1 - Craven, Dylan
A1 - J. S. Almeida-Cortez
A1 - Cabral, George A.L.
A1 - B. de Jong
A1 - Denslow, J.S.
A1 - Dent, D.H.
A1 - DeWalt, S.J.
A1 - Dupuy, J.M.
A1 - Durán, S.M.
A1 - Espírito-Santo, M.M.
A1 - Fandino, M.C.
A1 - César, Ricardo G.
A1 - Hall, Jefferson S.
A1 - Hernandez-Stefanoni, José Luis
A1 - Jakovac, Catarina C.
A1 - Junqueira, André B.
A1 - Kennard, Deborah
A1 - Letcher, Susan G.
A1 - Licona, Juan-Carlos
A1 - Lohbeck, Madelon
A1 - E. Marin-Spiotta
A1 - Martínez-Ramos, Miguel
A1 - Massoca, Paulo
A1 - Meave, Jorge A.
A1 - Mesquita, Rita
A1 - Mora, Francisco
A1 - Muñoz, Rodrigo
A1 - R. Muscarella
A1 - Nunes, Yule R. F.
A1 - Ochoa-Gaona, Susana
A1 - de Oliveira, Alexandre A.
A1 - Orihuela-Belmonte, Edith
A1 - M. Peña-Claros
A1 - Pérez-García, Eduardo A.
A1 - Piotto, Daniel
A1 - Powers, Jennifer S.
A1 - Rodríguez-Velázquez, Jorge
A1 - I. E. Romero-Pérez
A1 - Ruíz, Jorge
A1 - Saldarriaga, Juan G.
A1 - Sanchez-Azofeifa, Arturo
A1 - N. B. Schwartz
A1 - Steininger, Marc K.
A1 - N. G. Swenson
A1 - Toledo, Marisol
A1 - M. Uriarte
A1 - van Breugel, Michiel
A1 - van der Wal, Hans
A1 - Veloso, Maria D. M.
A1 - Vester, Hans F. M.
A1 - Vicentini, Alberto
A1 - Vieira, Ima C. G.
A1 - Bentos, Tony Vizcarra
A1 - Williamson, G. Bruce
A1 - Rozendaal, Danaë M. A.
VL - 530
SN - 0028-0836
UR - http://dx.doi.org/10.1038/nature16512
IS - 7589
JO - Biomass resilience of Neotropical secondary forests
ER -